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Abstract
A possibility to measure sin2 2θ13 using reactor neutrinos is examined in detail. It is shown that

the sensitivity sin2 2θ13 > 0.02 can be reached with 20 ton-year data by placing identical CHOOZ-

like detectors at near and far distances from a giant nuclear power plant whose total thermal energy

is 24.3 GWth. It is emphasized that this measurement is free from the parameter degeneracies which

occur in accelerator appearance experiments, and therefore the reactor measurement plays a role

complementary to accelerator experiments. It is also shown that the reactor measurement may be

able to resolve the degeneracy in θ23 if sin2 2θ13 and cos2 2θ23 are relatively large.
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I. INTRODUCTION

Despite the accumulating knowledges of neutrino masses and the lepton flavor mixing by
the atmospheric [1], the solar [2, 3], and the accelerator [4] neutrino experiments, the (1-3)
sector of the Maki-Nakagawa-Sakata (MNS) matrix [5] is still in the dark. At the moment,
we only know that |Ue3| = sin θ13 ≡ s13 is small, s2

13
<∼ 0.03, by the bound imposed by

the CHOOZ reactor experiment [6]. In this paper we assume that the light neutrino sector
consists of only three active neutrinos. We use the standard notation [7] for the MNS matrix
with ∆m2

ij ≡ m2
i − m2

j where mi is the mass of the ith eigenstate.
One of the challenging goals in an attempt to explore the full structure of lepton flavor

mixing would be measuring the leptonic CP or T violating phase δ in the MNS matrix.
If KamLAND [8] confirms the Large-Mixing-Angle (LMA) Mikheev-Smirnov-Wolfenstein
(MSW) [9, 10] solution of the solar neutrino problem, the most favored one by the recent
analyses of solar neutrino data [3, 11], we will have an open route toward the goal. Yet, there
might still exist the last impasse, namely the possibility of too small value of θ13. Thus, it
is emphasized more and more strongly recently that the crucial next step toward the goal
would be the determination of θ13.

In this paper, we raise the possibility that ν̄e disappearance experiment using reactor
neutrinos could be potentially the fastest (and the cheapest) way to detect the effects of
nonzero θ13. In fact, such an experiment using the Krasnoyarsk reactor complex has been
described earlier [12], in which the sensitivity to sin2 2θ13 can be as low as ∼ 0.01, an order
of magnitude lower than the CHOOZ experiment. We will also briefly outline basic features
of our proposal, and reexamine the sensitivity to sin2 2θ13 in this paper.

It appears that the most popular way of measuring θ13 is the next generation long base-
line (LBL) neutrino oscillation experiments, MINOS [13] and JHF phase I [14]. It may be
followed either by conventional superbeam [15] experiments, JHF phase II [14] and possibly
others [16, 17], or by neutrino factories [18, 19]. It is pointed out, however, that the mea-
surement of θ13 in LBL experiment with only neutrino channel (as planned in JHF phase
I) would suffer from large intrinsic uncertainties, on top of the experimental errors, due to
the dependence on an unknown CP phase and the sign of ∆m2

31 [20]. Furthermore, it is
noticed that the ambiguity remains in determination of θ13 and other parameters even if
precise measurements of appearance probabilities in neutrino as well as antineutrino chan-
nels are carried out, the problem of parameter degeneracy [20, 21, 22, 23, 24, 25]. (For a
global overview of parameter degeneracy, see [25].) While some ideas toward a solution are
proposed the problem is hard to solve experimentally and it is not likely to be resolved in
the near future.

We emphasize in this paper that reactor ν̄e disappearance experiment provide particularly
clean environment for the measurement of θ13. Namely, it can be regarded as a dedicated
experiment for determination of θ13: it is insensitive to the ambiguity due to all the remaining
oscillation parameters as well as to the matter effect. This is in sharp contrast with the
features of LBL experiments described above. Thus, the reactor measurement of θ13 will
provide us valuable information complementary to the one from LBL experiments and will
play an important role in resolving the problem of parameter degeneracy. It will be shown
that reducing the systematic errors is crucial for the reactor measurement of θ13 to be
competitive in accuracy with LBL experiments. We will present a preliminary analysis of
its possible roles in this context.

It is then natural to think about the possibility that one has better control by combining
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the two complementary way of measuring θ13, the reactor and the accelerator methods. In
fact, we will show in this paper that nontrivial relations exist between the θ13 measurements
by both methods thanks to the complementary nature of these two methods, so that in the
luckiest case one may be able to derive constraints on the value of the CP violating phase
δ, or to determine the neutrino mass hierarchy.

II. REACTOR EXPERIMENT AS A CLEAN LABORATORY FOR θ13 MEA-

SUREMENT

Let us examine in this section how clean the measurement of θ13 by the reactor exper-
iments is. We examine possible ”contamination” by other quantities, δ, the matter effect,
the sign of ∆m2

31, and the solar parameters one by one.
We first note that, due to its low neutrino energy of a few MeV, the reactor experiments

are inherently disappearance experiments, which can measure only the survival probability
P (ν̄e → ν̄e). It is well known that the survival probability does not depend on the CP phase
δ in arbitrary matter densities [26].

In any reactor experiment on the earth, short or long baseline, the matter effect is very
small because the energy is quite low and can be ignored to a good approximation. It can
be seen by comparing the matter and the vacuum effects (as the matter correction comes in
only through this combination [18])

aL

|∆31|
= 2.8 × 10−4

( |∆m2
31|

2.5 × 10−3eV2

)−1 (

E

4MeV

) (

ρ

2.3g · cm−3

) (

Ye

0.5

)

(1)

where

∆ij ≡
∆m2

ijL

2E
, (2)

with E being the neutrino energy and L baseline length. The best fit value of |∆m2
31| is given

by |∆m2
31| = 2.5×10−3eV2 from the Super-Kamiokande atmospheric neutrino data [27], and

throughout this paper we use this as the reference value for |∆m2
31|. a =

√
2GF Ne denotes the

index of refraction in matter with GF being the Fermi constant and Ne the electron number
density in the earth which is related to earth matter density ρ as Ne = Yeρ/mp where Ye is
proton fraction. Once we know that the matter effect is negligible we immediately recognize
that the survival probability is independent of the sign of ∆m2

31.
Therefore, the vacuum probability formula applies. Its exact expression is given by

1 − P (ν̄e → ν̄e) = sin2 2θ13 sin2 ∆31

2

+
1

2
c2
12 sin2 2θ13 sin ∆31 sin ∆21 +

(

c4
13 sin2 2θ12 + c2

12 sin2 2θ13 cos ∆31

)

sin2 ∆21

2
. (3)

The three terms in the second line of (3) are suppressed relative to the main depletion
term, the first term of the right-hand-side of (3) , by ε, ε2/ sin2 2θ13, ε2, respectively, where
ε ≡ ∆m2

21/∆m2
31. Assuming that |∆m2

31| = (1.6-3.9) × 10−3 eV2 [27], ε ' 0.1-0.01 for the
LMA MSW solar neutrino solution [3, 11]. Then, the first and the third terms in the second
line can be ignored, but the second term can be of order unity compared with the main
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depletion term provided that ε ' 0.1. (Notice that we are considering the measurement of
sin2 2θ13 in the range of 0.1-0.01.) Therefore, assuming that |∆m2

31| is determined by LBL
experiments in good accuracies, the reactor ν̄e disappearance experiments gives us a clean
measurement of θ13 which is independent of any solar parameters except for the case of high
∆m2

21 LMA solutions.
If the high ∆m2

21 LMA solution with ∆m2
21 ∼ 10−4 eV2 turns out to be the right one,

we need a special care for the second term of the second line of (3). In this case, the
determination of θ13 and the solar angle θ12 is inherently coupled,1 and we would need joint
analysis of near-far detector complex (see the next section) and KamLAND.

III. NEAR-FAR DETECTOR COMPLEX: BASIC CONCEPTS AND ESTIMA-

TION OF SENSITIVITY

In order to obtain a good sensitivity to sin2 2θ13, selection of an optimized baseline and
having the small statistical and systematic errors are crucial. For instance, the baseline
length that gives oscillation maximum for reactor ν̄e’s which have typical energy 4 MeV is
1.7 km for ∆m2 ' 2.5× 10−3eV2. Along with this baseline selection, if systematic error and
statistical error can be reduced to 1 % level, which is 2.8 times better than the CHOOZ
experiment [6], one order magnitude of improvement for the sin2 2θ13 sensitivity at ∆m2 '
2.5 × 10−3eV2 is possible. In this section we demonstrate that such kind of an experiment
is potentially possible if we place a CHOOZ like detector at a baseline 1.7 km in 200m
underground near the Kashiwazaki-Kariwa nuclear power plant whose maximum energy
generation is 24.3 GWth.

Major part of systematic errors is caused by uncertainties of the neutrino flux calculation,
number of protons and the detection efficiency. For instance, in the CHOOZ experiment,
the uncertainty of the neutrino flux is 2.1 %, that of number of protons is 0.8 %, and that
of detection efficiency 1.5 % as is shown in the Table I. The uncertainty of the neutrino flux
includes ambiguity of reactor thermal power generation, reactor fuel component, neutrino
spectra from fissions, and so on. The uncertainty of the detection efficiency includes system-
atic shift of defining the fiducial volume. These systematic uncertainties, however, cancel
out if identical detectors are placed near the reactors and data taken at the far and near
detectors are compared.2 To estimate how good the cancellation will be, we study the case
of the Bugey experiment, which uses three identical detectors to detect reactor neutrinos at
14/40/90m. For the Bugey case, the uncertainty of the neutrino flux improved from 3.5%
to 1.7% and the error on the solid angle remained the same (0.5%→0.5%). If the ratios of
improvedment for the Bugey case is directly applicable to our case, the systematic uncer-
tainty will improve from 2.7% to 0.8% as shown in the Table I. The ambiguity of the solid
angle will be negligibly small because the absolute baseline is much longer than the Bugey
case. We are thinking of a case that front detectors locate at 300m from the reactors.

Hereafter we take 2 % and 0.8 % as the reference values for the total systematic error.

1 The effect of nonzero θ13 for measurement of θ12 at KamLAND is discussed in [28].
2 This is more or less the strategy taken in the Bugey experiment [29]. The Krasnoyarsk group also plans

in their Kr2Det proposal [12] to construct two identical 50 ton liquid scintillator detectors at 1100m and

150m from the Krasnoyarsk reactor. They indicate that the systematic error can be reduced down to

0.5% by comparing the front and far detector.
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Let us examine the physics potential of such a reactor experiment assuming these reference
values for the systematic error. We take, for concreteness, the Kashiwazaki-Kariwa reactor of
24.3 GWth thermal power and assume its operation with 80% efficiency. A liquid scintillator
detector is located at 1.7 km away from the reactor and assumed to detect ν̄e by delayed
coincidence with 70% detection efficiency. The ν̄e’s of 1-8MeV visible energy, Evisi = Eν̄e

−
0.8 MeV, are used and the number of events are counted in 14 bins of 0.5MeV. Without
oscillation, 20 ton-year measurement yields 40,000 ν̄e events which is naively comparable to
a 0.5% statistical error. First, let us calculate how much we could constrain sin2 2θ13. Unlike
the analysis in [29] which uses the ratio of the numbers of events at the near and the far
detectors, we use the difference of the numbers of events Ni(L2)− (L1/L2)

2Ni(L1), because
the analysis of the ratio becomes complicated. (See, e.g., [30].) In the actual case two near
detectors are necessary. However, in this analysis both the near detectors are considered as
one detector for simplicity. The definition of ∆χ2, which stands for the deviation from the
best fit point (non-oscillation point) is given by

∆χ2(sin2 2θ13, ∆m2
31)

≡
14

∑

i=1

{[

Ni(0)(L2) −
(

L1

L2

)2

Ni(0)(L1)

]

−
[

Ni(L2) −
(

L1

L2

)2

Ni(L1)

]}2

Ni(0)(L2) +
(

L1

L2

)4

Ni(0)(L1) + σ2
sysNi

2
(0)(L2)

, (4)

Ni(Lj) ≡ Ni(sin
2 2θ13, ∆m2

31; Lj), Ni(0)(Lj) ≡ Ni(0, 0; Lj),

where σsys is the relative systematic error and Ni(sin
2 2θ13, ∆m2

31) denotes the theoretical
number of ν̄e events within the ith energy bin. In principle both the systematic errors σabs

sys

(absolute normalization) and σsys (relative normalization) appear in the denominator of (4),
but by taking the difference, we have (1+σabs

sys )[(1+σsys)Ni(L2)−(L1/L2)
2Ni(L1)]−[Ni(L2)−

(L1/L2)
2Ni(L1)] = σsysNi(L2)+σabs

sys [Ni(L2)−(L1/L2)
2Ni(L1)] which indicates the systematic

error is dominated by the relative error σsys, as the second term [Ni(L2) − (L1/L2)
2Ni(L1)]

is supposed to be small. In fact we have explicitly verified numerically that the presence
of (σabs

sys )
2[Ni(L2) − (L1/L2)

2Ni(L1)]
2 in the denominator of (4) does not affect any result.

The 90% CL exclusion limits, which corresponds to ∆χ2 = 2.7, are presented in Fig. 1 for
σsys = 2.0 % with detector size 5 ton-year and σsys = 0.8 % with detector size 20 ton-year,
respectively. The CHOOZ result [6] is also depicted in Fig. 1. The figure shows that it is
possible to measure sin2 2θ13 down to 0.02 at the maximum sensitivity with respect to ∆m2

31

and to 0.04 for larger ∆m2
31 by a 20 ton-year measurement, provided the quoted value of the

systematic errors is realized.
Next, let us examine how precisely we could measure sin2 2θ13. The definition of ∆χ2 is

∆χ2(sin2 2θ13, ∆m2
31)

≡
14

∑

i=1

{[

Ni(best)(L2) −
(

L1

L2

)2

Ni(best)(L1)

]

−
[

Ni(L2) −
(

L1

L2

)2

Ni(L1)

]}2

Ni(best)(L2) +
(

L1

L2

)4

Ni(best)(L1) + σ2
sysNi

2
(best)(L2)

where Ni(best) denotes Ni for the set of the best fit parameters (sin2 2θ
(best)
13 , |∆m

2(best)
31 |)

given artificially. The 90% CL allowed regions, whose bounds correspond to ∆χ2 = 4.6, are
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presented in Fig. 2 for sin2 2θ
(best)
13 = 0.04, · · · , 0.08 (in the case of 5 ton-year measurement

with σsys=2.0%) and sin2 2θ
(best)
13 = 0.02, · · · , 0.08 (in the case of 20 ton-year measurement

with σsys=0.8%), respectively. Assuming that the value of |∆m2
31| is known to a precision

of 10−4eV2 by the JHF experiment, we can read off the error at 90%CL in sin2 2θ13 from

Fig. 2, which suggests that the error is almost independent of the central value sin2 2θ
(best)
13 .

Thus we have

sin2 2θ13 = sin2 2θ
(best)
13 ± 0.034 (at 90%CL, d.o.f.=2)

for sin2 2θ
(best)
13

>∼ 0.04

in the case of σsys=2.0% with 5 ton-year measurement, and

sin2 2θ13 = sin2 2θ
(best)
13 ± 0.015 (at 90%CL, d.o.f.=2)

for sin2 2θ
(best)
13

>∼ 0.02

in the case of σsys=0.8% with 20 ton-year measurement.
If the JHF experiment measures the value of |∆m2

31| to the accuracy of 10−4eV2 [14],
the analysis of the allowed region of the reactor experiment reduces to one dimensional one
(∆χ2 = 2.7) and the error becomes

sin2 2θ13 = sin2 2θ
(best)
13 ± 0.012 (at 90%CL, d.o.f.=1)

for sin2 2θ
(best)
13

>∼ 0.013

for 20 ton-year measurement with σsys=0.8%.

IV. THE PROBLEM OF (θ13, θ23, δ) PARAMETER DEGENERACY

We explore in this and the following sections the possible significance of reactor mea-
surement of θ13 in the context of the problem of parameter degeneracy. We show that
reactor measurement of θ13 can resolve the degeneracy at least partly if the measurement is
sufficiently accurate.

Toward the goal we first explain what is the problem of parameter degeneracy in long-
baseline neutrino oscillation experiments. It is a notorious problem: measurement of the
disappearance and the appearance oscillation probabilities νµ(ν̄µ) → νe(ν̄e) in both neutrino
and antineutrino channels, no matter how they are accurate, does not allow unique determi-
nation of θ13, θ23, and δ. The problem was first recognized in the form of intrinsic degeneracy
between the two set of solutions of (θ13, δ) [21]. It was noticed that the degeneracy is further
duplicated provided that the two neutrino mass patterns, the normal (∆m2

31 > 0) or the
inverted (∆m2

31 < 0) hierarchies, are allowed [22], and/or that θ23 is not maximal [23]. In
general, there exist maximal eight-fold degeneracy in determination of (θ23, θ13, δ).

To illuminate the point, let us first restrict our treatment to relatively short-baseline ex-
periment such as CERN-Frejus project [16]. In this case, one can use the vacuum oscillation
approximation for the disappearance and the appearance probabilities. They read

1 − P (νµ → νµ) = sin2 2θ23 sin2 ∆31

2

−
(

1

2
c2
12 sin2 2θ23 − s13s

2
23 sin 2θ23 sin 2θ12 cos δ

)

sin ∆21 sin ∆31

+ O(ε2) + O(s2
13), (5)
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P [νµ(ν̄µ) → νe(ν̄e)] = s2
23 sin2 2θ13 sin2 ∆31

2
+

1

2
Jr sin ∆21 sin ∆31 cos δ

∓ Jr sin ∆21 sin2 ∆31

2
sin δ + O(εs2

13), (6)

where ε ≡ ∆m2
21/∆m2

31, Jr ≡ sin 2θ23 sin 2θ12c
2
13s13. The sign ± in (6) correspond to neutrino

and antineutrino channels, respectively. In fact, one can show that the matter effect comes
in with the factor of s2

13aL/∆31 [31].
By the disappearance measurement, for example at JHF, sin2 2θ23 and ∆m2

31 will be
determined with accuracies of 1 % level for both quantities [14].3 Then, we have two solutions
for θ23 (θ23 and π/2 − θ23) if θ23 is not maximal. For example, if sin2 2θ23 = 0.95, which is
perfectly allowed by the most recent atmospheric neutrino data [27], then s2

23 can be either
0.39 or 0.61. Since the dominant term in the appearance probability depends upon s2

23 not
sin2 2θ23, it leads to ±20 % difference in the number of appearance events. On the other
hand, appearance measurement will allow us to determine sin2 2θ13, but up to the ambiguity
of the above two solutions of s2

23.
Let us discuss the simplest possible case, the LOW or the vacuum (VAC) oscillation

solution of the solar neutrino problem. (See e.g., [32] for a recent discussion.) In this case,
one can safely ignore terms of order ε in (5) and (6). Then we are left with only the first terms
in the right-hand-side of these equations, the one-mass scale dominant vacuum oscillation
probabilities. Now let us define the symbols x = sin2 2θ13 and y = s2

23. Then, (5) and (6)
take the forms y = y1 or y2 (corresponding to two solutions of s2

23) and xy = constant,
respectively, for given values of the probabilities. It is then obvious that there are two
crossing point of these curves. This is the simplest version of the (θ13, θ23) degeneracy
problem.

We next discuss what happens if ε is not negligible though small: the case of LMA
solar neutrino solution. In this case, the appearance curve, xy = constant, split into two
curves (though they are in fact connected at their maximum value of s2

23) because of the two
degenerate solution of δ that is allowed for given values of P (νµ → νe) and P (ν̄µ → ν̄e). Then,
we have, in general, four crossing points for a given value of s2

23, the four-fold degeneracy.
Simultaneously, the two y = constant lines are slightly tilted and the splitting between two
curves becomes larger at larger sin2 2θ13, though the effect is too tiny to be clearly seen.

If the baseline distance is longer, the earth matter effect comes in and further splits
each appearance contour into two, depending upon the sign of ∆m2

31. Then, we have four
appearance contours and it is clear that we have eight solutions, as displayed in Fig.3. This
is a simple pictorial representation of the maximal eight-fold parameter degeneracy [23].

To draw Fig.3, we have calculated disappearance and appearance contours by using the
approximate formula derived by Cervera et al. [18]. We take the baseline distance and
neutrino energy as L = 295 km and E = 400 MeV with possible relevance to JHF project
[14]. The earth matter density is taken to be ρ = 2.3 g · cm−3 based on the estimate given
in [33]. We assume, for definiteness, that a long-baseline disappearance measurement has
resulted in sin2 2θ23 = 0.92 and ∆m2

31 = 2.5 × 10−3 eV2. For the LMA solar neutrino
parameters we take tan2 θ12 = 0.38 and ∆m2

21 = 6.9×10−5eV2 [34]. The qualitative features
of the figure remain unchanged even if we employ the parameters obtained by other analyses.

3 Usually one thinks of determining not ∆m2

31
but ∆m2

32
by the disappearance measurement. But, it

does not appear possible to resolve difference between these two quantities because one has to achieve

resolution of order ε for the reconstructed neutrino energy.

7



V. RESOLVING THE PARAMETER DEGENERACY BY REACTOR MEA-

SUREMENT OF θ13

Now we discuss how reactor experiments can contribute to resolve the parameter degen-
eracy. To make our discussion as concrete as possible we use the particular long-baseline
experiment, the JHF experiment [14], to illuminate the complementary role played by re-
actor and long-baseline experiments. It is likely that the experiment will be carried out at
around the first oscillation maximum (∆31 = π) for a number of reasons: the dip in energy
spectrum in disappearance channel is deepest, the number of appearance events are maxi-
mal [14], and the degeneracy in δ is reduced to two-fold (δ, π − δ) for each mass hierarchy
[20, 23].4 With the distance L = 295 km, the oscillation maximum is at around E = 600
MeV. We take the same mixing parameters as those used in Fig.3.

A. Illustration of how reactor measurement helps resolve the (θ13, θ23) degeneracy

Let us first give an illustrative example showing how reactor experiments could help
resolve the (θ13, θ23) degeneracy. In Fig.4 the two solutions of s2

23 for sin2 2θ23 = 0.92 as
well as the curves determined by appearance measurements of P (νµ → νe) and P (ν̄µ →
ν̄e) are drawn by the thick and the thin dotted lines for positive and the negative ∆m2

31,
respectively. The values of disappearance and appearance probabilities are chosen arbitrarily
for illustrative purpose and are given in the caption of Fig.4. We cannot resolve the two
curves with different δ for each sign of ∆m2

31 because they completely overlap with each
other at the oscillation maximum. Furthermore, the two overlapped curves of positive and
the negative ∆m2

31 also approximately overlap because of the small matter effect due to
short baseline of JHF, as indicated in Fig.4.

Thus, the degeneracy in the set (θ13, θ23) is effectively two-fold, and in this particular
example, the reactor experiment described in section III will be able to resolve the degener-
acy. Notice that once the θ23 degeneracy is lifted one can easily obtain other four solutions
of (δ, θ23) (though they are still degenerate) because the relationship between them is given
analytically in a completely general setting [25].

Considering the possibility that the long-baseline experiment run with the neutrino mode
only in its first phase, we present in Fig.4 the regions on sin2 2θ13-s

2
23 plane that are allowed

by varying completely arbitrary CP phase δ for a given P (νµ → νe). We observe that there
is a large intrinsic uncertainty in θ13 determination, the problem addressed in [20]. The two
regions corresponding to positive and negative ∆m2

31 heavily overlap due to small matter
effect.

4 In order to have this reduction, one has to actually tune the energy to vanishing cos δ term (the thinnest

CP trajectory), not ∆31 = π, after averaging over the energy spectrum [20].
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B. Resolving power of the (θ13, θ23) degeneracy by reactor measurement

Let us make a semi-quantitative estimate of how powerful the reactor method is for
resolving the (θ13, θ23) degeneracy.56 The degeneracy persists even for the LOW or the VAC
solutions of the solar neutrino problem, as we have seen in the previous section.

We consider, for simplicity, the special case ∆31 = π, i.e., energy tuned at the first
oscillation maximum, since the general case is complicated to work out. In this case the
other solution sin2 2θ′13 is given by [23]

sin2 2θ′13 = sin2 2θ13 tan2 θ23 +

(

∆m2
21

∆m2
31

)2
tan2 (aL/2)

(aL/π)2

×
[

1 − (aL/π)2] sin2 2θ12

(

1 − tan2 θ23

)

(7)

We already know from the Super-Kamiokande atmospheric neutrino data [27] that 0.92 ≤
sin2 2θ23 ≤ 1.0 at 90%CL which implies |1−tan2 θ23| ≤ 0.22. Together with |∆m2

21/∆m2
31| <

0.1 for the solar solution and |aL/2| � 1 for the JHF setup, we can ignore the second term
to get a rough estimate of the difference between sin2 2θ′13 and sin2 2θ13 in the region of
sin2 2θ13(>∼ 0.03) which the reactor experiment can reach. In fact in Fig.5(b) the value
of |δ(sin2 2θ13)|/(sin2 2θ13)average is calculated numerically as a function of sin2 2θ23, where
δ(sin2 2θ13) ≡ sin2 2θ′13 − sin2 2θ13, (sin2 2θ13)average ≡ (sin2 2θ′13 + sin2 2θ13)/2. For the best
fit value of the two mass squared differences ∆m2

21 and ∆m2
31, for which ε ≡ ∆m2

21/∆m2
31 =

0.028, there is little difference between the case with sin2 2θ13 = 0.03 and the one with
sin2 2θ13 = 0.09, and they are all approximated by the first term in (7). The solar mixing
angle is taken as tan2 θ12 = 0.38 [34]. For the purpose of comparison, we present in Fig.5(a)
the sensitivity which is expected to be achieved in the reactor experiment described in section
III.

The precision of sin2 2θ23 which is expected to be achieved at the JHF experiment [14]
is approximately 1% for 0.92 ≤ sin2 2θ23 ≤ 1.0 (See Fig. 11 in [14]). Therefore, if the
central value of sin2 2θ23 from the JHF measurement of νµ → νµ turns out to be 1.0 then
|1 − tan2 θ23| <∼ 0.2 implies about 20% error in sin2 2θ13. In this case the precision of the
reactor experiment of sin2 2θ13 is comparable or poorer than that of JHF, irrespective of the
value of sin2 2θ13. However, if the central value of sin2 2θ23 turns out to be smaller than 1.0
(<∼0.98) and if sin2 2θ13 is relatively large (>∼0.06) then the reactor experiment may enable us
to eliminate a fake solution sin2 2θ′13 and determine whether θ23 is smaller or larger than π/4.
(See Fig. 5 (a) and (b).) On the other hand, if the ratio ε ≡ ∆m2

21/∆m2
31 is much larger

than that at the best fit point, then the second term in (7) is not negligible. In Fig.5(b)
|δ(sin2 2θ13)|/(sin2 2θ13)average is plotted in the case of ε = 0.12 with sin2 2θ13 = 0.03, 0.06, 0.09
and we observe that the suppression in the first term in (7) is compensated by the second
term for sin2 2θ13 = 0.03, i.e., the degeneracy is small and therefore resolving the degeneracy
is difficult in this case. Estimation of the significance of the fake solution requires detailed
calculations of the accelerator experiment which include the statistical and systematic errors

5 The possibility of resolving the (θ13, θ23) by a reactor experiment was qualitatively mentioned in [32].
6 An alternative way to resolve the ambiguity is to look at νe → ντ channel because the main oscillation

term in the probability P (νe → ντ ) depends upon c2

13
. Unfortunately, this idea does not appear to be

explored in detail while it is briefly mentioned in [23, 24].
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as well as the correlations of errors and the parameter degeneracies, and it will be worked
out in future communication.

VI. MORE ABOUT REACTOR VS. LONG-BASELINE EXPERIMENTS

The foregoing discussion in the previous section implicitly assumes that the sensitivities
of reactor and LBL experiments with both ν and ν̄ channels are good enough to detect
effects of nonzero θ13. However, it need not be true, in particular, in coming 10 years. To
further illuminate complementary roles played by reactor and LBL experiments, we examine
their possible mutual relationship including the cases that there is signal in the former but
no signal in the latter experiments, or vice versa.

For ease of understanding by the readers, we restrict our presentation in this section to
very intuitive level by using figures. It is, of course, possible to make it more precise by
deriving inequalities based on analytic approximate formula [18].

If a reactor experiment sees positive evidence for disappearance in ν̄e → ν̄e (case of
Reactor Affirmative), it would be possible to determine θ13 up to certain experimental
errors. In this case, the appearance probability in LBL experiment must fall into the region
P (ν)min

± ≤ P (ν)± ≤ P (ν)max
± if the mass hierarchy is known, and by P (ν)min

− ≤ P (ν)± ≤
P (ν)max

+ otherwise. The similar inequalities are present also for antineutrino appearance
channel.

In Fig.6 we present allowed regions on a plane spanned by P (νµ → νe) and P (ν̄µ → ν̄e)
by taking the three reference values sin2 2θ13 = 0.09, 0.06, 0.03 (labeled as a, b, c). They
are inside the sensitivity region of the reactor experiment discussed in section III. In fact,
we have used the one dimensional χ2 analysis (i.e., the only parameter is sin2 2θ13) to obtain
the allowed regions in Fig.6 since the disappearance experiment of JHF is supposed to give
us quite an accurate value for |∆m2

31|. In doing this we have used the same systematic error
of 0.8 % and the statistical errors corresponding to 20 ton-year measurement by the detector
considered in section III. For sin2 2θ13 < 0.012, the particular reactor experiment would fail
(case of Reactor Negative) but the allowed region can be obtained by the same procedure,
and presented in Fig.6, the region labeled as d. We use the same LMA parameters as used
earlier for Fig.3 and Fig.4.

We discuss four cases depending upon the two possibilities of positive and negative evi-
dences (denoted as Affirmative, and Negative) in each disappearance and appearance search
in reactor and long-baseline accelerator experiments, respectively. However, it is convenient
to organize our discussion by classifying them into two categories, (Reactor Affirmative),
and (Reactor Negative).

A. Reactor Affirmative

We have two alternative cases, LBL appearance search Affirmative, or Negative.
LBL Affirmative:

Implications of positive evidence in appearance search in LBL experiments differ depend-
ing upon which region the observed appearance probability P (ν) falls in:
(1) Pmin

− ≤ P (ν) ≤ Pmin
+ , or (2) Pmax

− ≤ P (ν) ≤ Pmax
+ :

These case correspond to the two intervals which are given by the projection on the P
axis of all the shadowed regions (a, b or c) minus the projection on the P axis of the darker

10



shadowed region (a, b or c) in Fig.6. It is remarkable that in these cases the sign of ∆m2
31 is

determined. If it is in the former (latter) region, the sign is negative (positive) which implies
the inverted (normal) hierarchy of neutrino masses.
(3) Pmin

+ ≤ P (ν) ≤ Pmax
− :

This case corresponds to the interval which is given by the projection on the P axis of
the darker shadowed region (a, b or c) in Fig.6. In this case, the sign of ∆m2

31 cannot be
determined. The CP phase δ is determined up to the two-fold ambiguity δ ↔ π− δ for each
sign of ∆m2

31, and in general there is four degenerate solutions (apart from θ23 ↔ π/2− θ23

degeneracy).
It may be worth noting that if the reactor determination of θ13 is accurate enough, it

could be advantageous for LBL appearance experiments to run only in neutrino mode (where
the cross section is larger by a factor of 2-3) to determine δ, and possibly the sign of ∆m2

31

depending upon which region P (ν) falls in.
LBL Negative:

In principle, it is possible to have no appearance event even though the reactor sees
evidence for disappearance. This case corresponds to the left edge of the region c in Fig.6, i.e.,
the allowed region with sin2 2θ13 ' 0.02 whose projection on the P axis falls below P = 0.003.
In order for this case to occur the sensitivity limits P (ν)limit of the LBL experiment must
satisfy, assuming our ignorance to the sign of ∆m2

31, Pmin
− < P (ν)limit. If it occurs that

Pmin
− < P (ν)limit < Pmin

+ , then the sign of ∆m2
31 is determined to be minus.

In the case of the JHF experiment in its phase I P (ν)limit is estimated to be 3 × 10−3

[14].7 Then, by using the mixing parameters typical to the LMA solution, the case of LBL
Negative can only occur if sin2 2θ13

<∼ 0.01.

B. Reactor Negative

If the reactor experiment does not see disappearance of ν̄e one obtains the bound θ13 ≤
θRL
13 . This corresponds to the region d in Fig.6 for the experiment described in section III.

We have again two alternative cases, LBL appearance search Affirmative, or Negative.
LBL Affirmative:

If a LBL experiment measures the oscillation probability P (ν). Then, for a given value
of P (ν) the allowed region of sin 2θ13 is given by sin 2θmin

± ≤ sin 2θ13 ≤ sin 2θmax
± if the sign

of ∆m2
31 is known, and by sin 2θmin

+ ≤ sin 2θ13 ≤ sin 2θmax
− otherwise. We denote below

the maximum and the minimum values of θ13 collectively as θmax and θmin, respectively. In
Fig.4, the region bounded by sin 2θmin

+ and sin 2θmax
+ (sin 2θmin

− and sin 2θmax
− ) are indicated

as a region bounded by the thick (thin) solid line for a given value of s2
23.

Then, there are three possibilities which we discuss one by one:
(i) θRL

13 ≥ θmax: In this case no additional information is obtained by nonobservation of
disappearance of ν̄e in reactor experiment.
(ii) θmin ≤ θRL

13 ≤ θmax: In this case we have a nontrivial constraint θmin ≤ θ13 ≤ θRL
13 .

(iii) θRL
13 ≤ θmin: This case can only occur if reactor sensitivity is good enough, for example

very roughly speaking sin2 2θ13 ≤ 0.01 in JHF.
LBL Negative:

7 The sensitivity limit of sin2 2θ13 quoted in [14], sin2 2θ13 ≤ 6 × 10−3, obtained by using one-mass scale

approximation (ε � 1) may be translated into this limit for P (ν).
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In this case, we obtain the upper bound on θ13, which however depends on the assumed
values of δ and the sign of ∆m2

31. A δ-independent bound can also be derived: θ13 ≤
min[θRL, θmin].

VII. DISCUSSION AND CONCLUSIONS

We have explored in detail the possibility to measure sin2 2θ13 using reactor neutrinos, We
stressed that this measurement is free from the parameter degeneracies from which accel-
erator appearance experiments suffer, and that the reactor measurement is complementary
to accelerator experiments. We have shown that sensitivity to sin2 2θ13

>∼ 0.02 (0.04) is
obtained with a 24.3 GWth reactor and data size of 20 (5) ton-year by placing identical de-
tectors at near and far distances, assuming that the relative systematic error is 0.8% (2.0%),
respectively. In particular, if the relative systematic error is 0.8%, the error in sin2 2θ13 is
0.013 which is smaller than the uncertainty due to the combined (intrinsic and hierarchical)
parameter degeneracies expected in accelerator experiments. We also have shown that the
reactor measurement can resolve the degeneracy in θ23 ↔ π/2− θ23 and determine whether
θ23 is smaller or larger than π/4 if sin2 2θ13 and cos2 2θ23 are relatively large. We have taken
2.0% and 0.8% as the reference values for the relative systematic error. 2.0% is exactly
the same figure as the Bugey experiment while 0.8% is what we naively expect in the case
we have identical detectors which are exactly the same as the CHOOZ detector. It is also
technically possible to dig a 200m depth shaft hole with diameter wide enough to place a
CHOOZ-size detector in. Therefore the discussions in this paper are realistic. We hope the
present paper stimulates interest of the community in reactor measurements of θ13.
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Bugey absolute normalization relative normalization

flux 2.8% 0.0%

number of protons 1.9% 0.6%

solid angle 0.5% 0.5%

detection efficiency 3.5% 1.7%

total 4.9% 2.0%

CHOOZ–like absolute normalization relative normalization (expected)

flux 2.1% 0.0%

number of protons 0.8% 0.3%

detection efficiency 1.5% 0.7%

total 2.7% 0.8%

TABLE I: Systematic errors in the Bugey and the CHOOZ–like experiments. Relative errors in

the CHOOZ–like experiment are expectation.
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FIG. 1: Shown are the 90% CL exclusion limits for measurements with (σsys=2%, 5 t·yr),

(σsys=2%, ∞ t·yr), (σsys=0.8%, 20 t·yr), (σsys=0.8%, ∞ t·yr), respectively. The solid line is

the CHOOZ result, and the 90%CL interval 1.6 × 10−3eV2 ≤ ∆m2
31 ≤ 3.9 × 10−3eV2 of the

Super-Kamiokande atmospheric neutrino data is shown as a shaded strip.
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FIG. 2: Shown are the allowed regions at 90%CL with ((a): σsys=2%, 5 t·yr) and ((b): σsys=0.8%,

20 t·yr), respectively for sin2 2θ
(best)
13 =0.04, · · · , 0.08 ((a)), 0.02, · · · , 0.08 ((b)). The reference value

of |∆m
2(best)
31 | is 2.5 × 10−3 eV2.
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FIG. 3: The contours are depicted on the sin2 2θ13-s
2
23 plane that are determined by given values of

the appearance probabilities P (νµ → νe) = 0.01 and P (ν̄µ → ν̄e) = 0.015. The thick and the thin

dotted lines correspond to positive and negative ∆m2
31, respectively. The present bound on sin2 θ23

(0.36 < sin2 θ23 < 0.64) from the atmospheric neutrino data is denoted by the dotted dash lines.

There are four solutions for each s2
23 that are allowed for a given value of sin2 2θ23 to be measured

in LBL experiments. sin2 2θ23 = 0.92 is assumed in this figure and there are eight solutions which

are denoted by blobs. The oscillation parameters are taken as follows: ∆m2
31 = 2.5 × 10−3eV2,

∆m2
21 = 6.9 × 10−5eV2, tan2 θ12 = 0.38. The Earth density is taken to be ρ=2.3 g/cm3.
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FIG. 4: The allowed region on the sin2 2θ13-s
2
23 plane with a given value of P (νµ → νe) (in

this case P (νµ → νe) = 0.025) where the CP phase δ varies from 0 to 2π. The shadowed region

bounded by a thick line is for the normal hierarchy (∆m2
31 > 0) while the one bounded by a thin

line is for the inverted hierarchy (∆m2
31 < 0). Furthermore, if the value of P (ν̄µ → ν̄e) is measured

(in this case P (ν̄µ → ν̄e) = 0.035), then the shadowed region shrinks to two lines (because of the

intrinsic degeneracy there are two solutions). Because the reference values for the parameters gives

oscillation maximum ∆31 = π, these two lines become identical (denoted as a dotted line). Also

since the matter effect is small at the JHF experiment, the dotted lines for the normal (the thick

dotted one) and the inverted (the thin dotted one) hierarchies largely overlap. The thick dotted

line terminates at the boundary of the allowed region of the case with ∆m2
31 > 0. The bound

0.36 < sin2 θ23 < 0.64 is depicted by the dotted dash lines as in Fig.3. The oscillation parameters

and the Earth density are the same as those in Fig.3.
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FIG. 5: (a) The normalized error at 90%CL in the reactor measurements of θ13 for σsys=2%, 5 t·yr

(d.o.f.=2, |δ(sin2 2θ13)| ≤ 0.034), for σsys=0.8%, 20 t·yr (d.o.f.=2, |δ(sin2 2θ13)| ≤ 0.015), and for

σsys=0.8%, 20 t·yr (d.o.f.=1, |δ(sin2 2θ13)| ≤ 0.012), respectively. Without the precise information

on the value of |∆m2
31| from the JHF experiment, the degrees of freedom of the analysis is 2, but

once the the value of |∆m2
31| is known from JHF the degrees of freedom becomes 1.

(b) The plot of |δ(sin2 2θ13)|/(sin2 2θ13)average as a function of sin2 2θ23, where δ(sin2 2θ13) ≡
sin2 2θ′13 − sin2 2θ13, (sin2 2θ13)average ≡ (sin2 2θ′13 + sin2 2θ13)/2, ε ≡ ∆m2

21/∆m2
31 (ε = 6.9 ×

10−5eV2/2.5×10−3eV2 = 0.028 is for the best fit and an extreme case with ε = 1.9×10−4eV2/1.6×
10−3eV2 = 0.12, which is allowed at 90%CL (atmospheric) or 95%CL (solar), is also shown for illus-

tration), and sin2 2θ′13 stands for a fake solution due to the (θ13, θ23) degeneracy. sin2 2θ23 ≥ 0.92

has to be satisfied due to the constraint from the Super-Kamiokande atmospheric neutrino data.

In the best fit case with ε = 0.028, the contribution from the second term in (7) is small and there

is little difference between the case with sin2 2θ13 = 0.03 and the one with sin2 2θ13 = 0.09. If

the value of cos2 2θ23 is large enough, the value of |δ(sin2 2θ13)|/(sin2 2θ13)average increases and lies

outside of the normalized error of the reactor experiment, so the reactor result may resolve the θ23

ambiguity.
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FIG. 6: Allowed region on the P -P̄ plane (P ≡ P (νµ → νe), P̄ ≡ P (ν̄µ → ν̄e)) after an affirmative

(a negative) result is obtained. The cases a, b, c, d correspond to a: sin2 2θ13 = 0.09 ± 0.012,

b: sin2 2θ13 = 0.06 ± 0.012, c: sin2 2θ13 = 0.03 ± 0.012, d: sin2 2θ13 < 0.012, respectively. The

regions bounded by the dashed lines and dotted lines are for the normal hierarchy (∆m2
31 > 0)

and the inverted hierarchy (∆m2
31 < 0), respectively. The thickest dotted or dashed lines are

for sin2 θ23 = 0.5, the second thickest lines are for sin2 θ23 = 0.36 and the thinnest lines are for

sin2 θ23 = 0.64.
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